Abstract
<p>Many high-dimensional complex systems such as climate models exhibit an enormously complex landscape of possible asymptotic state. On most occasions these are challenging to analyse with traditional bifurcation analysis methods. Often, one is also more broadly interested in classes of asymptotic states. Here, we present a novel numerical approach prepared for analysing such high-dimensional multistable complex systems: Monte Carlo Basin Bifurcation Analysis (MCBB).<span>  </span>Based on random sampling and clustering methods, we identify the type of dynamic regimes with the largest basins of attraction and track how the volume of these basins change with the system parameters. In order to due this suitable, easy to compute, statistics of trajectories with randomly generated initial conditions and parameters are clustered by an algorithm such as DBSCAN. Due to the modular and flexible nature of the method, it has a wide range of possible applications. While initially oscillator networks were one of the main applications of this methods, here we present an analysis of a simple conceptual climate model setup up by coupling an energy balance model to the Lorenz96 system. The method is available to use as a package for the Julia language.<span> </span></p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.