Abstract

Mechanical systems are expected to operate under various load conditions, and it is necessary to use a lubrication system to achieve reliability and stable performance. Journal bearings, which are used to achieve such stable lubrication, are representative of hydrodynamic lubrication bearings. In this study, groove-shaped structures and rubber were applied to the ends of the bearings to ensure stable lubrication performance under conditions where, for various reasons, shock loads are applied in addition to static loads under misaligned conditions. The groove structure and rubber contribute to stable lubrication performance by preventing contact between the shaft and bearing as well as absorbing shock loads through elastic deformation of the groove’s end due to oil film pressure. This novel design, which utilizes groove-type flexible structures and rubber, led to journal bearings that exhibited improved lubrication performance under various shock load conditions. When a shock load is applied to a mechanical system, the design proposed in this study contributes to improving the reliability of the mechanical system by enhancing its lubrication performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.