Abstract

Recent experimental studies of solid 4He indicate a strong correlation between the crystal defects and the onset of a possible supersolid state. We use pulsed NMR techniques to explore the quantum dynamics of the 3He impurities in the solid 4He in order to examine certain theoretical models that describe how the disordered states are related to supersolidity. Because of the very small signal-to-noise ratio at low 3He concentration and the long spin-lattice relaxation time (T1), it is essential to significantly enhance the NMR sensitivity to be able to carry out the experiments. Here we present the design of a novel low temperature preamplifier which is built with a low noise pseudomorphic HEMT transistor that is embedded into a cross-coil NMR probe. With a low power dissipation of about 0.7 mW, the preamplifier is capable of providing a power gain of 30 dB. By deploying the preamplifier near the NMR coil below 4 K, the noise temperature of the receiver is reduced to approximately 1 K. This preamplifier design also has the potential to be adapted into a low temperature amplifier with both input and output impedance at 50 Ω or a low temperature oscillator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.