Abstract
In this study, a novel micro-gripper using a piezoelectric actuator was designed and improved by the design of experiments (DOE) approach. Using a bending PZT actuator connected to the micro-gripper by a rigid wedge can be considered as a novel approach in this field. Almost all of the similar grippers in this category were former actuated by a piezo-stack which has some limitations and difficulties like fabrication in MEMS proportions. The basic design was borrowed from compliant mechanisms that are suitable for MEMS application and easy to manufacture in micro-scale because of the intrinsic integration characteristic. Since stress concentration is common in flexure hinge compliant mechanisms, our focus was to consider strength as an important factor in our design. Finite element analysis tools were used to implement the DOE based on two criteria; minimizing stress concentration and maximizing the output displacement in the micro-gripper structure as much as possible with the consideration of the total size of the gripper. The experiment was performed to validate the simulation results and experiment results agreed well with the simulation one. The slight geometrical discrepancy in significant portions of structure like flexure hinges partially contributes to the accumulated error between the simulation and the experiments.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have