Abstract

Multi-objective evolutionary algorithms mainly include the methods based on the Pareto dominance relationship and the methods based on decomposition. The method based on Pareto dominance relationship will produce a large number of non-dominated individuals with the increase in population size or the number of objectives, resulting in the degradation of algorithm performance. Although the method based on decomposition is not limited by the number of objectives, it does not perform well on the complex Pareto front due to the fixed setting of the weight vector. In this paper, we combined these two different approaches and proposed a Multi-Objective Evolutionary Algorithm based on Decomposition with Dual-Population and Adaptive Weight strategy (MOEA/D-DPAW). The weight vector adaptive adjustment strategy is used to periodically change the weight vector in the evolution process, and the information interaction between the two populations is used to enhance the neighborhood exploration mechanism and to improve the local search ability of the algorithm. The experimental results on 22 standard test problems such as ZDT, UF, and DTLZ show that the algorithm proposed in this paper has a better performance than the mainstream multi-objective evolutionary algorithms in recent years, in solving two-objective and three-objective optimization problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call