Abstract

Assemble-to-order (ATO) strategies are common to many industries. Despite their popularity, ATO systems remain challenging to analyze. We consider a general-product structure ATO problem modeled as an infinite horizon Markov decision process. As the optimal policy of such a system is computationally intractable, we develop a heuristic policy that is based on a decomposition of the original system, into a series of two-component ATO subsystems. We show that our decomposition heuristic policy (DHP) possesses many properties similar to those encountered in special-product structure ATO systems. Extensive numerical experiments show that the DHP is very efficient. In particular, we show that the DHP requires less than 10−5 the time required to obtain the optimal policy, with an average percentage cost gap less than 4% for systems with up to 5 components and 6 products. We also show that the DHP outperforms the state aggregation heuristic of Nadar et al. (2018), in terms of cost and computational effort. We further develop an information relaxation-based lower bound on the performance of the optimal policy. We show that such a bound is very efficient with an average percentage gap not exceeding 0.5% for systems with up to 5 components and 6 products. Using this lower bound, we further show that the average suboptimality gap of the DHP is within 9% for two special-product structure ATO systems, with up to 9 components and 10 products. Using a sophisticated computing platform, we believe the DHP can handle systems with a large number of components and products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.