Abstract

AbstractWe present a computationally efficient procedure to determine control policies for an infinite horizon Markov Decision process with restricted observations. The optimal policy for the system with restricted observations is a function of the observation process and not the unobservable states of the system. Thus, the policy is stationary with respect to the partitioned state space. The algorithm we propose addresses the undiscounted average cost case. The algorithm combines a local search with a modified version of Howard's (Dynamic programming and Markov processes, MIT Press, Cambridge, MA, 1960) policy iteration method. We demonstrate empirically that the algorithm finds the optimal deterministic policy for over 96% of the problem instances generated. For large scale problem instances, we demonstrate that the average cost associated with the local optimal policy is lower than the average cost associated with an integer rounded policy produced by the algorithm of Serin and Kulkarni Math Methods Oper Res 61 (2005) 311–328. © 2008 Wiley Periodicals, Inc. Naval Research Logistics 2009

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.