Abstract
Data privacy protection is increasingly critical in fields like healthcare and finance, yet existing methods, such as Fully Homomorphic Encryption (FHE), differential privacy (DP), and federated learning (FL), face limitations like high computational complexity, noise interference, and communication overhead. This paper proposes a novel data obfuscation method based on probability density and information entropy, leveraging a probability density extraction module for global data distribution modeling and an information entropy fusion module for dynamically adjusting the obfuscation intensity. In medical image classification, the method achieved precision, recall, and accuracy of 0.93, 0.89, and 0.91, respectively, with a throughput of 57 FPS, significantly outperforming FHE (0.82, 23 FPS) and DP (0.84, 25 FPS). Similarly, in financial prediction tasks, it achieved precision, recall, and accuracy of 0.95, 0.91, and 0.93, with a throughput of 54 FPS, surpassing traditional approaches. These results highlight the method’s ability to balance privacy protection and task performance effectively, offering a robust solution for advancing privacy-preserving technologies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have