Abstract

With the increasing proportion of Li-ion batteries in energy structures, studies on the estimation of the state of charge (SOC) of Li-ion batteries, which can effectively ensure the safety and stability of Li-ion batteries, have gained much attention. In this paper, a new data-driven method named the probabilistic threshold compensation fuzzy neural network (PTCFNN) is proposed to estimate the SOC of Li-ion batteries. Compared with other traditional methods that need to build complex battery models, the PTCFNN only needs data learning to obtain nonlinear mapping relationships inside Li-ion batteries. In order to avoid the local optimal value problem of traditional BP neural networks and the fixed reasoning mechanism of traditional fuzzy neural networks, the PTCFNN combines the advantages of a probabilistic fuzzy neural network and a compensation fuzzy neural network so as to improve the learning convergence speed and optimize the fuzzy reasoning mechanism. Finally, in order to verify the estimation performance of the PTCFNN, a 18650-20R Li-ion battery was used to carry out the estimation test. The results show that the mean absolute error and mean square error are very small under the conditions of a low-current test and dynamic-current test, and the overall estimation error is less than 1%, which further indicates that this method has good estimation ability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call