Abstract

As the most productive crustacean species in aquaculture, Litopenaeus vannamei is seriously threatened by white spot syndrome virus (WSSV), which has caused huge economic damage in the past decades. Shrimp cuticle proteins are the important components in the frontier target tissues, including cuticle and the chitinous lining of the digestive tract. In present study, a novel cuticle protein gene, named LvCPAP1, was isolated and demonstrated to play an important role in WSSV infection. The deduced amino acid sequence of LvCPAP1 contained a signal peptide and a conserved chitin-binding domain type 2 (ChBD2). Tissue distribution analysis revealed that LvCPAP1 was predominantly expressed in epidermis and stomach. The transcription levels of LvCPAP1 in epidermis and stomach were significantly regulated upon WSSV challenge. DsRNA silencing of LvCPAP1 decreased the in vivo WSSV copy numbers and the death rate of shrimp after WSSV infection, indicating that LvCPAP1 might facilitate WSSV invasion. In addition, the interaction between LvCPAP1 and the major envelop protein VP24 of WSSV was revealed by yeast two-hybrid system and further confirmed by dot blot and pull-down assays. The present study implied that cuticle protein LvCPAP1 might favor the entry process of WSSV, which provided new clues for understanding the role of cuticle proteins during virus infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call