Abstract

In this paper, a novel third-order autonomous memristor-based chaotic circuit is proposed. The circuit has simple topology and contains only four elements including one linear negative impedance converter-based resistor, one linear capacitor, one linear inductor, and one nonlinear current-controlled memristor. Firstly, the voltage-current characteristic analysis of the memristor emulator for different driving amplitudes and frequencies are presented. With dimensionless system, the symmetry, equilibrium point and its stability are analysed. It is shown that the system has two unstable saddle-foci and one unstable saddle. A set of typical parameters are chosen for the generation of chaotic attractor. Differing from the common period-doubling bifurcation route in smooth dynamical systems, this memristive system shows abrupt transition from the coexisting period-1 limit cycles to robust chaos when varying system parameters. Various dynamical behaviors are analysed using the numerical simulations and circuit verifications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call