Abstract

Preparing a cost-effective material which can been applied in a wide pH range is very crucial for the remediation of Cr(Ⅵ) polluted water. In this study, a novel material, almandine/humboldtine nanospheres (AHN) composites, was synthesized directly from almandine by one-pot method. Characterizations of XRD and SEM/TEM showed that the structure changes of almandine to nano-humboldtine leaded to significant increase of Cr(Ⅵ) removal capacities. And 96.45% of Cr(Ⅵ) was removed by AHN-24 composite at pH value of 3, initial Cr(Ⅵ) concentration of 20 mg/L, temperature of 298.15 K and dosage of 0.6 g/L. Furthermore, Cr(Ⅵ) removal capacity was only decreased from 48.23 mg/g to 34.33 mg/g when the initial pH value increased from 3 to 11, which demonstrated that the synthesized composite had a wide pH application range in Cr(Ⅵ) removal. The thermodynamic parameters (ΔG0 < 0, ΔH0 > 0 and ΔS0 > 0) illustrated that Cr(VI) removal process was spontaneous and endothermic. FTIR and XPS revealed that the Cr(Ⅵ) removal mechanisms included reduction-precipitation and reduction-complexation. Combined with cost analysis, all of results implied that the synthesized composites were a high efficient and low cost material for Cr(Ⅵ) pollution remediation in a wide pH range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call