Abstract

Alternative of using organic and biomass residues as additives or reinforcements in the production of composite materials has attracted great attention since the 2000s. However, when lignocellulosic biomass is used as natural fiber in composite production, it may have some disadvantages such as low interfacial bonding with the matrix phase. The most common methods used to strengthen the bonding between the matrix phase and the additive material is to use maleic anhydride (MA) as a compatibilizer and some chemicals such as dicumyl peroxide (DCP) as reaction initiators to increase the compatibilizing effect of MA. Therefore, in this study, olive pomace oil maleate (OPOMA) was prepared to be used in the production of PLA composites. Olive pomace obtained with ionic liquid pretreatment (OP-IL) in the previous studies of the authors and OPOMA were used in composite production with a biodegradable polymer of PLA. The composite was obtained by mixing 95PLA+5OP-IL by weight in twin-screw extruder at 190ºC for 10 minutes. Under the same conditions, the effect of OPOMA was evaluated by adding 0.5%, 1% and 2% ratio to PLA + OP-IL. In FTIR spectrum of OPOMA, a new symmetrical and asymmetric C=O bands were formed differently from olive oil. While the addition of low doses of OPOMA to PLA+OP-IL composites increased the tensile elongation value, tensile strength did not change. The elasticity modulus showed less change compared to other mechanical properties. To conclude, it can be emphasized that oil maleates of lignocellulosic biomasses can be promising compatibilizer for biodegradable composite matrices

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call