Abstract
To efficiently produce bioactive compounds of Echinacea via adventitious root (AR) culture, we established an AR co-culture system of Echinacea species. ARs of different combination of Echinacea species [E. pallida (Epa), E. purpurea (Epu), and E. angustifolia (Ean)] were inoculated into 5 L balloon-type airlift bioreactors to select a suitable combination group. The biomass of ARs increased in the Epa+Epu group but decreased in co-culture groups of Epa+Ean and Epa+Epu+Ean. In the Epa+Epu group, the content and productivity of total phenolics, flavonoids, and caffeic acid derivatives increased, a monomer of caffeic acid derivatives (caffeic acid) that is absent in single-species cultures (Epa or Epu) were synthesized; moreover, Epa+Epu also showed the highest antioxidant activity. The inoculum proportions in Epa+Epu significantly influenced the co-culture effect; among the proportion groups (Epa:Epu = 1:6, 2:5, 3:4, 1:1, 4:4, 5:2, and 6:1), the Epa:Epu proportion of 4:3 was the most favorable for AR biomass and bioactive compound accumulation, and the antioxidant activity also peaked at 4:3 proportion. In addition, the co-culture system is suitable for large bioreactors (10 and 20 L), wherein the AR biomass increased without a decrease in the amount of bioactive compounds. A co-culture system was thus successfully established in this study, and AR cultures are expected to be used as an alternative raw material for the production of Echinacea-derived products.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have