Abstract

PPG (Photoplethysmography) and ECG (Electro-cardiogram) physiological signals have been known to have certain indicators for establishing blood pressure (BP) levels. Continuous monitoring of blood pressure (BP) is highly valuable for cardiovascular patients; however the existing non-invasive cuff-based blood pressure monitoring system is discreet and applies artificial pressure on patients' arms that is uncomfortable. The other invasive method is highly interventional in nature and is highly disturbing when the patient is recuperating in the hospital wards or elsewhere. A non-invasive cuff-less, non-disturbing, and continuous BP measurement system targeted toward surgical, clinical, and domestic usage are proposed in this work. A convolutional neural network (CNN) followed by a long short-term memory layer (LSTM) was designed and applied to ECG and PPG signals to present accurate systolic blood pressure (SBP), and diastolic blood pressure (DBP). For developing the CNN-LSTM layers, a novel and open-source dataset was compiled that consisted of PPG and ECG signals from 30 healthy participants and is made publicly available for further usage to the research community. The novel CNN-LSTM based cuff-less blood pressure evaluation system presented a mean absolute error (MAE) of 2.57 mmHg and 3.44 mmHg for SBP and DBP respectively with similar standard-deviation (SD) metrics. The characterized error metrics of the proposed system are the lowest to date when compared to other prior work. Clinical Relevance- A cuff-less BP estimation system allows patients to have easy access to blood pressure evaluation as well as aid in determining unsafe health ailments like hypertension. Ready access to such system will not only allow practitioners to continuously monitor BP in hospitals but also help patients to regularly monitor BP more frequently at their convenience.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.