Abstract

DNA replication checkpoint is activated in response to replication stresses. It maintains the integrity of stalled replication forks and prevents premature segregation of largely unreplicated chromosomes. In budding yeast, Mec1 and Rad53 kinases (homologous to mammalian ATM/ATR and Chk2 kinases, respectively) are the main effectors of this checkpoint control. Using a yeast based screen, we have identified acompound (named here ENA) which inhibits DNA replication and activatesMec1/Rad53 checkpoint. A brief exposure to this compound stops fork progression at or near replication origin and renders the forks incompetent to resume replication despite the presence of a functional checkpoint. ENA also inhibits DNA synthesis in mammalian cells leading to the activation of ATM/ATR pathway and the induction of apoptosis in a p53 independent manner. Interestingly, ENA acts as an effective antiproliferative agent against a subset of cancer cell lines and as an anti-tumor agent against human xenografts in mice. Thus, ENA is a potent cell cycle inhibitor with conceivable therapeutic potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.