Abstract

Mechanical characterizations of natural rubber filled with carbon-based nanomaterials were extensively studied in tensile and tear modes whereas fewer attempts have been conducted on a dynamic shear condition using a double-bonded shear test piece. This is of importance since natural rubbers are widely used as flexible membranes for wave energy harvesting devices. Therefore, this study was aimed to explore the microstructural, rheological, and dynamic viscoelastic characteristics of natural rubbers filled with different Multi-Walled Carbon Nanotubes (MWCNTs) contents. A combined compounding approach was employed to ensure a homogenous CNT dispersion was achieved. Transmission electron microscopy (TEM) was performed for the materials characterization while the processability and curing parameters of the compounds were investigated using the Mooney viscosity and rheometry test. Dynamic shear properties were compared using a cyclic test performed on a double-bonded shear test piece. TEM images showed that an optimum CNTs dispersion was reached at 3 phr MWCNTs loading whereas increasing CNT content resulted in further inhomogeneity. The addition of CNTs into the natural rubber not only improved the curing properties of the compound, i.e., low scorch and curing times, but it also increased the Mooney viscosity, the rheological properties, and the dynamic shear properties of the nanocomposite compared to the pristine rubber. The Payne and Mullins effects were also observed for all compounds manifesting dependency on the CNTs content and applied strain amplitude. Finally, MWCNT enhanced the dissipated energy of the nanocomposites with respect to the neat rubber in which an increase of 1040 % in energy dissipation for 10 phr MWCNTs compared to the control at a strain amplitude of 200 % was achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.