Abstract

In this study, multiwalled carbon nanotubes (MWCNTs) were confined or localized in an immiscible blend of poly(ethylene terephthalate)/polyamide 6 (PET/PA6). A co-rotating twin-screw extruder and melt-compounding were used to prepare nanocomposites of PET/PA6 (60/40, w/w) and MWCNTs with various MWCNT contents in the range 0.001–2 phr. The raw, unfunctionalized MWCNTs were used as fillers. A remarkable change in the morphology of the blend happened on the basis of the amount of MWCNTs added to the blend: the PET phase converted into the PA6 phase at a certain MWCNT content. Although the PA6 phase was formed as a domain phase in the PET matrix in blends containing less than 0.01 phr of MWCNTs, the PET phase suddenly became discontinuous because of phase conversion in the PA6 matrix in blends containing 0.01 and 0.05 phr of MWCNTs. In the blends containing more than 0.1 phr of MWCNTs, the initial morphology was recovered, that is, the PET phase became the matrix phase again. Moreover, in the recovered state, the of the PA6 domain was much larger in the blends containing more than 0.1 phr of MWCNTs than it was in the composites that did not contain any MWCNTs and in those that contained 0.001 phr of MWCNTs. The MWCNTs, on the other hand, selectively located at the interface of the PET and PA6 phases. The rheological, electrical, and crystallization behaviors of the blends were also investigated to study the effects of the concentration of MWCNTs on the structure of the prepared composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call