Abstract

Chemotherapy is severely limited by continuously decreased therapeutic efficacy and uncontrolled side effects on normal tissue, which can be improved by constructing a nanoparticle-based drug delivery system (DDS). Nevertheless, no studies have reported on DDS-based on carbon-nanodots (CNDs), combining subcellular organelle-targeted imaging/drug delivery, high drug loading content, and glutathione (GSH)-sensitive drug release into one system. Herein, the as-fabricated CNDs can be covalently conjugated with a mitochondria-targeting ligand (triphenylphosphine, TPP), a smart GSH-responsive disulfide linker (S-S), and the anticancer drug (camptothecin, CPT) to initially prepare a theranostic nano-DDS (TPP-CNDs-S-CPT) with the drug loading efficiency of 64.6 wt%. Owing to excellent water dispersibility, superior fluorescence properties, satisfactory cell permeability, and favorable biocompatibility, TPP-CNDs-S-CPT was successfully used for intracellular mitochondrial-targeted imaging in vitro. High intracellular GSH concentrations in tumor cells caused the cleavage of S-S, resulting in concomitant activation and release of CPT, as well as significant fluorescence enhancement. In vivo, TPP-CNDs-S-CPT exhibited lower biological toxicity and even higher tumor-activatable performance than free CPT, as well as specific cancer therapy with few side effects. The mitochondria-targeted ability and the precise drug-release in tumor make TPP-CNDs-S-CPT a hopeful chemotherapy prodrug, providing significant theoretical basis and data support for in-depth understanding and exploration of chemotherapeutic DDS-based on CNDs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call