Abstract
Biometric authentication plays pivotal role for providing security in any industry. In the previous works, biometric authentication systems are developed by using the Password, Pin-number and Signature as a single source of identification (i.e. unimodal biometric system). But these systems can be noisy, lost, stolen or subjected to spoofing attack. This paper proposes a Multimodal Biometric Authenticated system which use more than one biometric trait for recognition and it is more effective than the any previous work. The proposed system is strong enough from attacks as the authentication is being done by using multimodal biometric traits. The present system handles two traits face and finger for recognition and these are followed by prepossessing, removing the noise, compression the traits and then extract features by using Histogram Oriented Gradients technique (HOG). The probability Density Function (PDF) values are obtained from the HOG features by using Gaussian mixer model. Fusion the PDF values by using score level fusion. Finally correlation compares both the training dataset and testing dataset traits. Identification of biometric traits have been done based on multimodal biometric system and results are better recognition performance compared to existing methods. However, experiments also done on different parametric measures like RMSE, PSNR and CR. It was observed that DCT has better performance than the existing HAAR wavelet transform. The proposed work is useful for reduce the size of the database, utilization of bandwidth, identification of traits and authentication in bank system, crime investigation etc.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have