Abstract

The sulfidogenic process driven by sulfate-reducing bacteria (SRB) is not suitable for mercury-contaminated wastewater treatment due to the highly toxic methyl-mercury (MeHg) produced by SRB. In our previous study, we observed in short-term batch tests that sulfur-reducing bacteria (S0RB) could remove mercury ions without MeHg production. Thus, the aim of this study is to develop a biological sulfur reduction process driven by S0RB for mercury-contaminated wastewater, and investigate its long-term performance on mercury removal and MeHg accumulation. Receiving mercury-contaminated wastewater containing 0–50 mg Hg(II)/L for 326 days, S0RB in the sulfur-reducing bioreactor showed high tolerance with mercury toxicity, and removed 99.4% ± 1.4% of the influent Hg(II) by biogenic sulfide. MeHg was always found to be undetectable in the bioreactor, even though the sulfidogenic bacteria were exposed to high levels of Hg(II) in long-term trials. The result of qPCR analysis further revealed that the mercury-methylation functional gene (hgcA) concentration in the bioreactor sludge was found to be extremely lower than in the SRB-enriched sludge, Geobacter sulfurreducens PCA and Desulfomicrobium baculatum DSM 4028, implying that there was no or few mercury methylators in the bioreactor. In short, the biological sulfur reduction process using S0RB can efficiently treat mercury-contaminated wastewater, with high Hg(II) removal efficiency and no MeHg accumulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call