Abstract

A novel effective bioelectrochemical sensor interface for enzyme biosensors is proposed. The method is based on in situ synthesis of gold nanostructures (5–15nm) on the thin-film electrode surface using the oleylamine (OA) method, which provides a high-density, stable, electrode interface nanoarchitecture. New method to activate the surface of the OA-stabilized nanostructured electrochemical interface for further functionalization with biomolecules (glucose oxidase enzyme) using Meerwein's salt is proposed. Using this approach a new biosensor for glucose determination with improved analytical characteristics: wide working range of 0.06–18.5mM with a sensitivity of 22.6±0.5μAmM−1cm−2, limit of detection 0.02mM, high reproducibility, and long lifetime (60d, 93%) was developed. The surface morphology of the electrodes was characterized by scanning electron microscopy (SEM). The electrochemical properties of the interface were studied by cyclic voltammetry and electrochemical impedance spectroscopy using a Fe(II/III) redox couple. The studies revealed an increase in the electroactive surface area and a decrease in the charge transfer resistance following surface activation with Meerwein's reagent. A remarkably enhanced stability and reproducibility of the sensor was achieved using in situ synthesis of gold nanostructures on the electrode surface, while surface activation with Meerwein's salt proved indispensable in achieving an efficient bioelectrochemical interface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.