Abstract

This study reports the synthesis of a nanocomposite comprised of graphene (G) supported manganese dioxide (MnO2) incorporated into the network of polythioaniline (MnO2-G/PTA). The hybrid composite was applied as an electrode material for the development of a bioanode. The bioanode was fabricated by the electrochemical entrapment of ferritin (Frt) as mediator and glucose oxidase (GOx) enzyme in the matrix of the as-synthesized MnO2-G/PTA deposited on glassy carbon electrode (GCE) surface. The structural features and electrochemical behaviour of the modified electrodes were investigated by Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV), linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). The results unfolded that the hybrid electroactive support (MnO2-G/PTA) employed for the immobilization of the enzyme (GOx) established an appropriate electrical cabling between the redox enzyme (GOx) and the electrode surface with the assistance provided by the biocompatible mediator (Frt) working to enhance the electrical signals. The developed GCE/MnO2-G/PTA/Frt/GOx bioanode attained a maximum current density of 3.68 mAcm−2 at 35 mM glucose concentration at a scan rate of 100 mVs−1. Thus, the MnO2-G/PTA/Frt/GOx modified electrode possesses high potential and good biocompatibility for bio-electricity production from glucose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.