Abstract

A novel biodegradable multiblock poly(ester urethane) (PEU), consisting of poly(l-lactic acid) (PLLA) and poly(butylene succinate) (PBS) blocks, has been successfully synthesized via chain-extension reaction of dihydroxyl terminated PLLA (PLLA-OH) and PBS prepolymers (PBS-OH) using toluene-2,4-diisocyanate (TDI) as a chain extender. The chemical structures and molecular weights of PEUs, containing different block lengths and weight fractions of PLLA and PBS, were characterized by 1H NMR and GPC. The effects of the structures on the physical properties of PEUs were systematically studied by means of DSC, TGA, WAXD and tensile testing. The DSC results indicated that PLLA segment was compatible well with PBS segment in amorphous phase and the crystallization of PEU was predominantly caused by PBS segment, which was also confirmed by WAXD. The results of tensile testing showed that the extensibility of PLLA was largely improved by incorporating PBS segment. The PEU can be used as a potential substitute for some petroleum-based thermoplastics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call