Abstract

BackgroundmicroRNAs (miRNAs) are a class of small non-coding RNAs which have been recognized as ubiquitous post-transcriptional regulators. The analysis of interactions between different miRNAs and their target genes is necessary for the understanding of miRNAs' role in the control of cell life and death. In this paper we propose a novel data mining algorithm, called HOCCLUS2, specifically designed to bicluster miRNAs and target messenger RNAs (mRNAs) on the basis of their experimentally-verified and/or predicted interactions. Indeed, existing biclustering approaches, typically used to analyze gene expression data, fail when applied to miRNA:mRNA interactions since they usually do not extract possibly overlapping biclusters (miRNAs and their target genes may have multiple roles), extract a huge amount of biclusters (difficult to browse and rank on the basis of their importance) and work on similarities of feature values (do not limit the analysis to reliable interactions).ResultsTo overcome these limitations, HOCCLUS2 i) extracts possibly overlapping biclusters, to catch multiple roles of both miRNAs and their target genes; ii) extracts hierarchically organized biclusters, to facilitate bicluster browsing and to distinguish between universe and pathway-specific miRNAs; iii) extracts highly cohesive biclusters, to consider only reliable interactions; iv) ranks biclusters according to the functional similarities, computed on the basis of Gene Ontology, to facilitate bicluster analysis.ConclusionsOur results show that HOCCLUS2 is a valid tool to support biologists in the identification of context-specific miRNAs regulatory modules and in the detection of possibly unknown miRNAs target genes. Indeed, results prove that HOCCLUS2 is able to extract cohesiveness-preserving biclusters, when compared with competitive approaches, and statistically confirm (at a confidence level of 99%) that mRNAs which belong to the same biclusters are, on average, more functionally similar than mRNAs which belong to different biclusters. Finally, the hierarchy of biclusters provides useful insights to understand the intrinsic hierarchical organization of miRNAs and their potential multiple interactions on target genes.

Highlights

  • MicroRNAs are a class of small non-coding RNAs which have been recognized as ubiquitous post-transcriptional regulators

  • This analysis is performed by exploiting a statistical significance test, whose goal is to evaluate the hypothesis that messenger RNAs (mRNAs) which belong to the same biclusters are, on average, more functionally similar than mRNAs which belong to different biclusters

  • We use statistical tests to evaluate the hypothesis that mRNAs which belong to the same biclusters are more functionally similar than mRNAs which belong to different biclusters

Read more

Summary

Introduction

MicroRNAs (miRNAs) are a class of small non-coding RNAs which have been recognized as ubiquitous post-transcriptional regulators. The analysis of interactions between different miRNAs and their target genes is necessary for the understanding of miRNAs’ role in the control of cell life and death. In this paper we propose a novel data mining algorithm, called HOCCLUS2, designed to bicluster miRNAs and target messenger RNAs (mRNAs) on the basis of their experimentally-verified and/or predicted interactions. Existing biclustering approaches, typically used to analyze gene expression data, fail when applied to miRNA:mRNA interactions since they usually do not extract possibly overlapping biclusters (miRNAs and their target genes may have multiple roles), extract a huge amount of biclusters (difficult to browse and rank on the basis of their importance) and work on similarities of feature values (do not limit the analysis to reliable interactions)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call