Abstract

BackgroundSmall RNAs have proven to be essential regulatory molecules encoded within eukaryotic genomes. These short RNAs participate in a diverse array of cellular processes including gene regulation, chromatin dynamics and genome defense. The tammar wallaby, a marsupial mammal, is a powerful comparative model for studying the evolution of regulatory networks. As part of the genome sequencing initiative for the tammar, we have explored the evolution of each of the major classes of mammalian small RNAs in an Australian marsupial for the first time, including the first genome-scale analysis of the newest class of small RNAs, centromere repeat associated short interacting RNAs (crasiRNAs).ResultsUsing next generation sequencing, we have characterized the major classes of small RNAs, micro (mi) RNAs, piwi interacting (pi) RNAs, and the centromere repeat associated short interacting (crasi) RNAs in the tammar. We examined each of these small RNA classes with respect to the newly assembled tammar wallaby genome for gene and repeat features, salient features that define their canonical sequences, and the constitution of both highly conserved and species-specific members. Using a combination of miRNA hairpin predictions and co-mapping with miRBase entries, we identified a highly conserved cluster of miRNA genes on the X chromosome in the tammar and a total of 94 other predicted miRNA producing genes. Mapping all miRNAs to the tammar genome and comparing target genes among tammar, mouse and human, we identified 163 conserved target genes. An additional nine genes were identified in tammar that do not have an orthologous miRNA target in human and likely represent novel miRNA-regulated genes in the tammar. A survey of the tammar gonadal piRNAs shows that these small RNAs are enriched in retroelements and carry members from both marsupial and tammar-specific repeat classes. Lastly, this study includes the first in-depth analyses of the newly discovered crasiRNAs. These small RNAs are derived largely from centromere-enriched retroelements, including a novel SINE.ConclusionsThis study encompasses the first analyses of the major classes of small RNAs for the newly completed tammar genome, validates preliminary annotations using deep sequencing and computational approaches, and provides a foundation for future work on tammar-specific as well as conserved, but previously unknown small RNA progenitors and targets identified herein. The characterization of new miRNA target genes and a unique profile for crasiRNAs has allowed for insight into multiple RNA mediated processes in the tammar, including gene regulation, species incompatibilities, centromere and chromosome function.

Highlights

  • Small RNAs have proven to be essential regulatory molecules encoded within eukaryotic genomes

  • Library preprocessing Pre-sequencing size restriction was performed on tammar pouch young brain, liver, testis, ovary and fibroblast cells to target the small RNAs in the 18-22nt range, encompassing the micro RNA (miRNA)

  • To confirm that there was no overlap between the testis Piwi interacting RNA (piRNA) and testis crasiRNA pools, regardless of the size limitations performed in the small RNA sequencing and subsequent data analyses, we identified only 10 crasiRNAs that overlapped with seven piRNAs using the one mismatch mapping strategy

Read more

Summary

Introduction

Small RNAs have proven to be essential regulatory molecules encoded within eukaryotic genomes. These short RNAs participate in a diverse array of cellular processes including gene regulation, chromatin dynamics and genome defense. As part of the genome sequencing initiative for the tammar, we have explored the evolution of each of the major classes of mammalian small RNAs in an Australian marsupial for the first time, including the first genome-scale analysis of the newest class of small RNAs, centromere repeat associated short interacting RNAs (crasiRNAs). Small RNAs in mammalian cells have been categorized into different classes based on their size and biogenesis: 22 nucleotide (nt) microRNAs (miRNAs), 21-24nt endogenous short interfering RNAs (siRNAs), 26-32nt piwi interacting (piRNAs) (including repeatassociated siRNAs, rasiRNAs), and 35-42nt crasiRNAs (centromere repeat associated short interacting RNAs) (reviewed in [1,2,3,4,5,6,7]). Is the recent discovery that miRNAs can function in gene activation through induction of promoter activity [9]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call