Abstract

A novel analysis method is proposed based on ensemble empirical mode decomposition (EEMD) and support vector machines (SVMs) for the fault diagnosis of bevel gears. Firstly, the EEMD method is used to decompose the fluctuations in the original gear noise signals into different timescales so as to obtain several intrinsic mode functions (IMFs). The meshing frequency components in the decomposition results are reconstructed to eliminate the influence of interference noise. Then, time-synchronous averaging (TSA) is applied in further denoising to weaken signals independent of the gear meshing frequency. After denoising, various signal characteristics are calculated. Obvious signal characteristics for different fault states are selected as a set of feature vectors. Finally, a particle optimisation method is used to optimise SVM parameters and the feature vectors are input as training samples into an SVM in order to achieve fault recognition. The experimental results show that this novel analysis method can effectively diagnose different conditions of the bevel gear and achieve an identification rate for gear faults of 98.33%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.