Abstract

Myelin basic protein (MBP) is a major target of T cells in lesions of multiple sclerosis (MS) patients and its animal model, experimental autoimmune encephalomyelitis (EAE). Interactions between the major histocompatibility complex II containing antigenic peptides and the T cell receptor activate CD4+ T cells that perpetuate EAE and MS. Previously reported data has shown that treating with an altered peptide ligand (APL) in which the normal antigenic peptide sequence of MBP has been slightly changed at T cell contact positions is helpful in reducing disease in both rodents and humans. The use of natural peptides, which are susceptible to protease degradation, requires high concentrations that can create hypersensitivity reactions. Our hypothesis is that APL containing aza substitutions, CH(R)-N->N(R)N, could lead to improved protease resistance, reduced clinical disease scores, and a shift in T cell profile. In this study, several aza-APLs and control peptides were synthesized and screened for the best aza-APL candidate (3aza-APL) based on dissociation half time from major histocompatibility complex (MHC) class II, induction of IL-2 response, and resistance to degradation by proteases. The efficacy was then tested in vivo. Results indicate that 3aza-APL is superior to currently available APLs in terms of protease resistance and disease suppression in EAE mice. The 3aza-APL induced anti-inflammatory immune responses by altering key transcription factors and cytokine genes which regulate T cell subpopulations. These data suggest that the novel 3aza-APL has increased protease resistance property and is effective in reducing clinical and physiological signs of disease in EAE animals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.