Abstract

Avalanche transistor (AT)-based repetitive nanosecond pulse generators with high amplitude, fast rise time, narrow pulse width, and low jitter have been widely developed and applied in numerous fields. However, relatively little research has been carried out on the positive nanosecond pulse generation with high flexibility in a wide range of output voltage amplitude. In this article, a novel AT-based Marx circuit (MC) topology adopting base-triggering method is proposed to avoid the formation of current filamentation inside the transistors and resolve the contradiction between high-voltage output and high repetition rate operation. A <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$6\times 10$ </tex-math></inline-formula> -stage MC prototype is implemented with optimized parameters to validate the feasibility of the proposed topology. The conduction processes of transistors show that, with the injection of additional base current, the switched-ON modes are transformed, which contributes to reliable conduction of transistors even without sufficient overvoltage ramp. With the adoption of inner triggering loops, the minimum working voltage of the prototype is extended to 1150 V. The operation characteristics of the generator in the whole operation range are investigated in depth. Experimental results illustrate that, at the 75- <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\Omega $ </tex-math></inline-formula> match-ended coaxial cable, the prototype is capable of generating positive pulses with an adjustable voltage amplitude in the range of 6.50 to 12.39 kV, a basically consistent rise time of 3.6 ns and pulse width of 19.5 ns. Over 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">7</sup> successive pulses are generated at a maximum repetition rate of 1 kHz without any device failure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call