Abstract
Avalanche transistor Marx bank circuits (MBCs) are widely used in high voltage repetitive nanosecond pulse generators, but problems exist with respect to increasing the output voltage due to the limited pulsed current. Accordingly, a novel topology based on an avalanche transistor MBC combined with a linear transformer driver is proposed, the latter of which exhibits advantageous stress distribution and modular structure. A four-module prototype with four units in each module is developed in the laboratory. The output characteristics are investigated by varying important parameters such as the main capacitance, the number of conducting units, the number of cascaded modules, and the trigger signal time delay. The test results verify the validity of the proposed topology. For a 50 Ω resistive load, the prototype can generate pulses with an amplitude of 10.9 kV, a rise time of 3.3ns, and a voltage superposition efficiency of 89%. The topology proposed in this paper may help to provide a method to further improve the output performance of avalanche transistor MBCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.