Abstract

We undertook a lab-scale evaluation of a novel autotrophic denitrification and nitrification integrated constructed wetland (ADNI-CW) for improved carbon (C), nitrogen (N), and sulfur (S) cycling to treat mariculture wastewater. The process involved an up-flow autotrophic denitrification constructed wetland unit (AD-CW) for sulfate reduction and autotrophic denitrification, and an autotrophic nitrification constructed wetland unit (AN-CW) for nitrification. The 400-day experiment investigated the performance of the AD-CW, AN-CW, and entire ADNI-CW processes under various hydraulic retention times (HRTs), nitrate concentrations, dissolved oxygen levels, and recirculation ratios. Under various HRTs, the AN-CW achieved a nitrification performance exceeding 92%. Correlation analysis of the chemical oxygen demand (COD) revealed that, on average, approximately 96% of COD was removed by sulfate reduction. Under different HRTs, increases in influent NO3−–N concentrations caused the amount of sulfide to gradually decrease from sufficient to deficient, and the autotrophic denitrification rate also decreased from 62.18 to 40.93%. In addition, when the NO3−–N load rate was above 21.53 g N/m2·d, the transformation of organic N by mangrove roots may have increased NO3−–N in the top effluent of the AD-CW. The coupling of N and S metabolic processes mediated by various functional microorganisms (Proteobacteria, Chloroflexi, Actinobacteria, Bacteroidetes, and unclassified_d__Bacteria) enhanced N removal. We intensively explored the effects of changing inputs as culture species developed on the physical, chemical, and microbial changes of CW to ensure a consistent and effective management of C, N, and S. This study lays the foundation for green and sustainable mariculture development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call