Abstract
The long record of Landsat imagery, which is the cornerstone of Earth observation, provides an opportunity to monitor land use and land cover (LULC) change and understand the interactions between the climate and earth system through time. A few change detection algorithms such as Continuous Change Detection and Classification (CCDC) have been developed to utilize all available Landsat images for change detection and characterization at local or global scales. However, the reliable, rapid, and reproducible collection of training samples have become a challenge for time series land cover classification at a large scale. To meet the challenge, we proposed an automatic phenology learning (APL) method with the assumption that the temporal profiles of samples within the same land cover type are the same or similar at a local scale to generate evenly distributed training samples automatically. We designed the method to build land cover patterns for each category based on consensus samples derived from multiple existing scientific datasets including LANDFIRE's (LF) Existing Vegetation Type (EVT), USGS National Land Cover Database (NLCD), National Agricultural Statistics Service (NASS) Cropland Data Layer (CDL), and National Wetlands Inventory (NWI). Then we calculated the Time-Weighted Dynamic Time Warping (twDTW) distance between any undefined samples and land cover patterns in the same geographical region as prior knowledge. Finally, we selected the optimal land cover category for each undefined sample from the land cover products based on the designed criteria iteratively using the twDTW distance as an indicator. The method was applied in the footprint of 10 selected Landsat Analysis Ready Data (ARD) tiles in the eastern and western conterminous United States (CONUS) to produce annual land cover maps from 1985 to 2017. The accuracy assessment and visual comparison revealed that the APL method can generate reliable training samples without any manual interpretation, producing better land cover results especially for the grass/shrub and wetland land cover classes. Applying the APL method, the overall accuracy of the annual land cover maps was improved by 2% over the accuracy of Land Change Monitoring, Assessment, and Projection (LCMAP) Collection 1.0 Science Products in the research regions. Our results also indicate that the APL method provides an approach for best use of different land cover products and meets the requirement of intensive sampling for training data collection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.