Abstract

The co-evolution of multi-cities has emerged as the primary form of urbanization in China in recent years. However, the processes, patterns, and coordination are not well characterized and understood, which hinders the understanding of the driving forces, consequences, and management of polycentric urban development. We used the Continuous Change Detection and Classification (CCDC) algorithm to integrate all available Landsat 5, 7, and 8 images and map annual land use and land cover (LULC) from 2001 to 2017 in the Chang–Zhu–Tan urban agglomeration (CZTUA), a typical urban agglomeration in China. Results showed that the impervious surface in the study area expanded by 371 km2 with an annual growth rate of 2.25%, primarily at the cost of cropland (169 km2) and forest (206 km2) during the study period. Urban growth has evolved from infilling being the dominant type in the earlier period to mainly edge-expansion and leapfrogging in the core cities, and from no dominant type to mainly leapfrogging in the satellite cities. The unfolding of the “cool center and hot edge” urban growth pattern in CZTUA, characterized by higher expansion rates in the peripheral than in the core cities, may signify a new form of the co-evolution of multi-cities in the process of urbanization. Detailed urban management and planning policies in CZTUA were analyzed. The co-evolution of multi-cities principles need to be studied in more extensive regions, which could help policymakers to promote sustainable and livable development in the future.

Highlights

  • The land covers and landscapes in many of China’s cities have been modified significantly in recent years due to the rapid economic development and population growth

  • This study provided a continuous and comprehensive understanding of the spatiotemporal landscape dynamics in a typical urban agglomeration of China, which was timely and necessary to support the regional urban master planning

  • Tracking the land use and land cover (LULC) changes could provide a unique perspective for decisionmakers and promote more sustainable, livable urban development

Read more

Summary

Introduction

The land covers and landscapes in many of China’s cities have been modified significantly in recent years due to the rapid economic development and population growth. More than 50% of China’s population lives in cities, and this rate will continue to rise to 75% by 2030 [1]. For this reason, urbanization has become one of the most important factors affecting ecosystem services and environmental quality, especially in some emerging cities or city clusters [2,3]. To address the adverse impacts and promote sustainable urban development, the Chinese government has issued the “New Urbanization Plan” with the intent to emphasize ecological progress, urbanization quality, domestic demand expansion, and rural–urban coordination simultaneously [4,5] To achieve these goals, it is necessary to monitor and understand urban expansion continuously [6]. Mapping urban growth accurately is a prerequisite for studying and managing the urbanization process, revealing the drivers, and evaluating the consequences [7,8,9,10]

Objectives
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call