Abstract

In this paper, a monolithic arbitrary Lagrangian–Eulerian (ALE)-finite element method (FEM) is developed based upon a novel ALE mapping for a type of parabolic/mixed parabolic moving interface problem with jump coefficients. A stable Stokes-pair mixed FEM within a specific stabilization technique and a novel ALE time-difference scheme are developed to discretize this interface problem in both semi- and fully discrete fashion, for which the stability and error estimate analyses are conducted in the ALE frame. Numerical experiments are carried out to validate all theoretical results in different cases. The developed novel ALE-FEM can be extended to a moving interface problem that involves the pore fluid (Darcy) equation or Biot’s model in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.