Abstract

Belief functions theory is an important tool in the field of information fusion. However, when the cardinality of the frame of discernment becomes large, the high computational cost of evidence combination will become the bottleneck of belief functions theory in real applications. The basic probability assignment (BPA) approximations, which can reduce the complexity of the BPAs, are always used to reduce the computational cost of evidence combination. In this paper, both the cardinalities and the mass assignment values of focal elements are used as the criteria of reduction. The two criteria are jointly used by using rank-level fusion. Some experiments and related analyses are provided to illustrate and justify the proposed new BPA approximation approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.