Abstract

Enediyne compounds have found limited applications in polymer science and material chemistry due to the poor regioselectivity and/or the step-growth nature in their radical polymerizations. However, the cationic cyclization of enediynes exhibits a high regioselective 5-exo-dig mechanism, providing a new strategy for the synthesis of polyfulvene derivatives. The expected polymers were successfully produced by cationic polymerization of enediynes induced by CF3SO3H, and a well-defined conjugated structure was confirmed by NMR, IR, and UV–vis spectroscopy. GPC analysis shows a relatively narrow molecular weight distribution, and the molecular weight reaches up to 62.9 kDa. On the other hand, the structural features of the obtained polymers and the mechanism of the cationic polymerization were investigated through kinetic study and MALDI-TOF MS analysis, which revealed a second-order consumption of enediyne monomer and the polymerization being probably terminated through intramolecular abstraction of proton f...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.