Abstract
Alkali charge is one of the most relevant variables in the continuous kraft cooking process. The white liquor mass flow rate can be determined by analyzing the chip bulk density fed to the process. At the mills, the total time for this analysis usually is greater than the residence time in the digester. This can lead to an increasing error in the mass of white liquor added relative to the specified alkali charge. This paper proposes a new approach using the Box-Jenkins methodology to develop a dynamic model for predicting chip bulk density. Industrial data were gathered on 1948 observations over a period of 12 months from a Kamyr continuous digester at a bleached eucalyptus kraft pulp mill in Brazil. Autoregressive integrated moving average (ARIMA) models were evaluated according to different statistical decision criteria, leading to the choice of ARIMA (2,0,2) as the best forecasting model, which was validated against a new dataset gathered during 2 months of operations. A combination of predictors has shown more accurate results compared to those obtained by laboratory analysis, allowing a reduction of around 25% of the chip bulk density error to the alkali addition amount.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.