Abstract
The present study deals with time series models which are non-structural-mechanical in nature. The Box Jenkins Autoregressive integrated moving average (ARIMA) and Generalized autoregressive conditional heteroscedastic (GARCH) models are studied and applied for modeling and forecasting of spot prices of Gram at Delhi market. Augmented Dickey Fuller (ADF) test is used for testing the stationarity of the series. ARCH-LM test is used for testing the volatility. It is found that ARIMA model cannot capture the volatility present in the data set whereas GARCH model has successfully captured the volatility. Root Mean square error (RMSE), Mean absolute error (MAE) and Mean absolute prediction error (MAPE) were computed. The GARCH (1,1) was found to be a better model in forecasting spot price of Gram. The values for RMSE, MAE and MAPE obtained were smaller than those in ARIMA (0,1,1) model. The AIC and SIC values from GARCH model were smaller than that from ARIMA model. Therefore, it shows that GARCH is a better model than ARIMA for estimating daily price of Gram.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.