Abstract

Modifications were made on the traditional split Hopkinson pressure bar (SHPB) system to conduct dynamic shear tests. The shear response of Ti-6Al-4V was acquired at a shear strain rate of 104 s−1 by using this modified apparatus. The geometry as well as the clamping mode of the double-notch specimen was optimized by commercial FEM software ABAQUS, and the feasibility of the experiment set-up was validated. A shear stress calibration coefficient of ▪ = 1.03 and a shear strain calibration coefficient of ▪ = 0.50 were obtained. We have employed highspeed photography to record the deformation process, especially the initiation and propagation of adiabatic shear band (ASB), during the dynamic shear test. The frames show that the time duration from ASB initiation to its completion is less than 2 μs, from which we can estimate that the propagation speed of ASB within Ti-6Al-4V is more than 1250 m/s under such loading conditions. The temperature rise within ASB is also estimated to be ΔT2 ≈ 1460 °C based on energy balance. Such high temperature has led to softening of the material within the ASBs, and has intensified the shear localization and finally resulted in fracture of the material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.