Abstract

In the optimization of deep hole boring processes, machining condition monitoring (MCM) plays an important role for efficient tool change policies, product quality control and lower tool costs. This paper proposes a novel approach to the MCM of deep hole boring on the basis of the pseudo non-dyadic second generation wavelet transform (PNSGWT). This approach is developed via constructing a valuable indicator, i.e., the wavelet energy ratio around the natural frequency of boring bar. Self-excited vibration occurs at the frequency of the most dominant mode of the machine tool structure. Via modeling dynamic cutting process and performing its simulation analysis during deep hole boring, it is found that the vibration amplitudes at the nature frequency of the machine tool rise with the tool wear. The PNSGWT that has relative adjustable dyadic time-frequency partition grids, good time-frequency localizability and exact shift-invariance is used to extract the wavelet energy in the specified frequency band. Accordingly, the MCM of deep hole boring can be implemented by means of normalizing the wavelet energy. Finally, a field experiment on deep hole boring machine tool is conducted, and the result shows that the proposed method is effective in the process of monitoring tool wear and surface finish quality for deep hole boring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call