Abstract

AbstractThere are no direct methods to evaluate calculated soil heat flux (SHF) at the surface (G0). Instead, validation and cross evaluation of methods for calculating G0 usually rely on the conventional calorimetric method or the degree of the surface energy balance closure. However, there is uncertainty in the calorimetric method itself, and factors apart from G0 also contribute to nonclosure of the surface energy balance. Here we used a novel approach to evaluate nine different methods for calculating SHF, including the calorimetric method and methods based on analytical solutions of the heat diffusion equation. The SHF (Gz) measured by a self‐calibrating SHF plate at a depth of z = 5 cm below the surface (hereafter Gm_5cm) was deployed as a reference. Each SHF calculation method was assessed by comparing the calculated Gz at the same depth (hereafter Gc_5cm) with Gm_5cm. The calorimetric method and simple measurement method performed best in determining Gc_5cm but still underestimated Gm_5cm by 19% during the daytime. Possible causes for this underestimation include errors and uncertainties in SHF measurements and soil thermal properties, as well as the phase lag between Gc_5cm and Gm_5cm. Our results indicate that the calorimetric method achieves the most accurate SHF estimates if self‐calibrating SHF plates are deployed at two depths (e.g., 5 cm and 10 cm), soil temperature and water content measurements are made in a few depths between the two plates, and soil thermal properties are accurately quantified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.