Abstract

Objective. To develop and implement a novel approach which combines the technique of scout EEG source imaging (ESI) with convolutional neural network (CNN) for the classification of motor imagery (MI) tasks. Approach. The technique of ESI uses a boundary element method (BEM) and weighted minimum norm estimation (WMNE) to solve the EEG forward and inverse problems, respectively. Ten scouts are then created within the motor cortex to select the region of interest (ROI). We extract features from the time series of scouts using a Morlet wavelet approach. Lastly, CNN is employed for classifying MI tasks. Main results. The overall mean accuracy on the Physionet database reaches 94.5% and the individual accuracy of each task reaches 95.3%, 93.3%, 93.6%, 96% for the left fist, right fist, both fists and both feet, correspondingly, validated using ten-fold cross validation. We report an increase of up to 14.4% for overall classification compared with the competitive results from the state-of-the-art MI classification methods. Then, we add four new subjects to verify the validity of the method and the overall mean accuracy is 92.5%. Furthermore, the global classifier was adapted to single subjects improving the overall mean accuracy to 94.54%. Significance. The combination of scout ESI and CNN enhances BCI performance of decoding EEG four-class MI tasks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.