Abstract

This paper introduces a new framework into future data-driven railway condition monitoring systems (RCM). For this purpose, we have proposed an edge processing unit that includes two main parts: a data classification model that classifies Internet of Things (IoT) data into maintenance-critical data (MCD) and maintenance-non-critical data (MNCD) and a data transmission unit that, based on the class of data, employs appropriate communication methods to transmit data to railway control centers. For the transmission of MNCD, we propose a travel pattern method that employs train stations as points of data offloading so that trains can deliver data as well as passengers at stations. The performance of our proposed solution is successfully validated via three various data sets under different operating conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.