Abstract

A simple, low-cost, and green process was used for the synthesis of carbon quantum dots (CQDs) through the hydrothermal treatment of salep as a novel bio-polymeric carbon source in presence of only pure water. The silver nanoparticles (AgNPs) were embedded on the surface of CQDs by ultra-violate (UV) irradiation to the CQDs and silver nitrate mixture solution. The as-synthesized CQDs and AgNPs decorated CQDs nanohybrid (AgNPs/CQDs) were characterized by UV–vis and photoluminescence spectroscopy, Fourier transform-infrared spectroscopy, transmission electron microscopy, atomic force microcopy, X-ray diffraction, and field emission scanning electron microscopy. Then, the AgNPs/CQDs nanohybrid was casted on the glassy carbon electrode in order to prepare an amperometric hydrogen peroxide (H2O2) sensor. The electrochemical investigations show that the AgNPs/CQDs nanohybrid possesses an excellent performance toward the H2O2 reduction. In the optimum condition, the linear range of H2O2 determination was achieved from 0.2 to 27.0μM with high sensitivity (1.5μA/µM) and the limit of detection was obtained about 80nM (S/N=3). Finally, the prepared nanohybrid modified electrode was effectively applied to the H2O2 detection in the disinfected fetal bovine serum samples, and the recovery was obtained about 98%. The achieved results indicate that the AgNPs/CQDs nanohybrid with high reproducibility, repeatability, and stability has a favorable capability in electrochemical sensors improvement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call