Abstract

1-Hydroxypyrene (1-OHP), a metabolite of polycyclic aromatic hydrocarbons (PAHs), is a frequently used biomarker for assessing human exposure to PAHs. Therefore, the technology that provides a quick, simple, cost-effective, portable, accurate, precise, and reliable test is still in great demand. To the best of our knowledge, the creation of an electrochemical device based on poly(l-glutamic acid)-modified a screen-printed graphene electrode (poly(L-GA)/SPGE) for 1-OHP detection was described for the first time. The developed sensor was simply and rapidly manufactured via only a single step of electropolymerization. All the concerned parameters and electroanalytical conditions were studied to obtain the best performance of the methodology. Under optimal conditions, the 1-OHP sensing provided a linear range of 1–1000 nM with the limits of detection and quantification of 0.95 and 3.16 nM, respectively. Moreover, this developed sensor was successfully utilized by determining 1-OHP in human urine samples. In comparison with conventional methods, this newly proposed electrochemical methodology might be tremendously valuable for 1-OHP evaluation in environmental and occupational applications, leading to the early detection of illness risk linked to PAHs in the human body.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call