Abstract

A novel acetylcholinesterase (AChE) biosensor based on Ag NPs, carboxylic graphene (CGR) and Nafion (NF) hybrid modified glass carbon electrode (GCE) has been successfully developed. Ag NPs–CGR–NF possessed predominant conductivity, catalysis and biocompatibility and provided a hydrophilic surface for AChE adhesion. Chitosan (CS) was used to immobilize AChE on the surface of Ag NPs–CGR–NF/GCE to keep the AChE activities. The AChE biosensor showed favorable affinity to acetylthiocholine chloride (ATCl) and could catalyze the hydrolysis of ATCl with an apparent Michaelis–Menten constant value of 133μM, which was then oxidized to produce a detectable and fast response. Under optimum conditions, the biosensor detected chlorpyrifos and carbaryl at concentrations ranging from 1.0×10−13 to 1×10−8M and from 1.0×10−12 to 1×10−8M. The detection limits for chlorpyrifos and carbaryl were 5.3×10−14M and 5.45×10−13M, respectively. The developed biosensor exhibited good sensitivity, stability, reproducibility and low cost, thus providing a promising tool for analysis of enzyme inhibitors. This study could provide a simple and effective immobilization platform for meeting the demand of the effective immobilization enzyme on the electrode surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.