Abstract

DNA cloned from Chlamydia trachomatis is able to direct the formation of the genus-specific lipopolysaccharide epitope of chlamydiae in enteric Gram-negative bacteria. We now demonstrate that a single C. trachomatis gene (gseA) is sufficient to impart this trait to Escherichia coli. The deduced amino acid sequence of gseA shows 23% identity (66% similarity) to kdtA, an E. coli gene that codes for a bifunctional enzyme catalyzing the addition of two 3-deoxy-D-manno-octulosonic acid (Kdo) residues to lipid A precursors (Clementz, T., and Raetz, C. R. H. (1991) J. Biol. Chem. 266, 9687-9696). Extracts of E. coli expressing gseA transfer at least one additional Kdo unit from CMP-Kdo to precursors already bearing the two Kdo residues attached by the kdtA gene product. Introduction of gseA into an E. coli mutant with a thermolabile kdtA gene product endows cell extracts with the ability to transfer not only the third but also the first two Kdos to lipid A precursors, demonstrating that the C. trachomatis enzyme is at least trifunctional. Given the similarities of these two Kdo transferases and the essentiality of Kdo in Gram-negative bacteria, lipopolysaccharide biosynthesis may be a target for development of novel drugs effective against chlamydiae.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.