Abstract

The achievement of high-quality wave manipulation and energy concentration has always been considered as state-of-the-art technologies, especially for integrated photonics, acoustics, and mechanics. The exploration of the topological phase of matter provides abundant design tools for robust waveguiding that is immune to backscattering at small defects and sharp bends. Recent research has extended the elastic wave manipulation from 2D edge waveguiding to 3D planar waveguiding. However, most of them are limited to single-mode and single-frequency wave propagation along the designed plane. This paper introduces a novel 3D topological metamaterial structure whose geometrical parameters are specifically configured to obtain dual-mode topological states at distinct frequencies. Parametric studies are presented to demonstrate the controllability of bandgaps and to provide a design principle for preventing the effects of unwanted modes. Topological interface modes with either high group velocity or near-zero group velocity along the z direction are found. Full-scale finite element simulations are presented to uncover the elastic wave propagation behavior. The interesting layer-locked and layer-unlocked waveguiding based on excitation polarization and frequency for both straight path and zig-zag path are demonstrated. The outcomes of this work suggest abundant potential applications related to elastic wave control such as wave filters, energy harvesters, mechanical computers, and the like. This work may also help inspire future research on more complex and sophisticated multi-mode waveguiding in 3D spaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.