Abstract
A novel 3D microstructural model is proposed to investigate the relationship between morphology and mechanical properties of trabecular bone. Open and closed cell geometries were selected with varying volume fractions and degrees of anisotropy that simulate the architectures of human cancellous bone over a broad range of anatomical locations. Finite element models of both cells were developed using beams and shells. Volume fraction and mean intercept length were calculated analytically and the effective elastic tensors were computed with linear tissue properties and periodic boundary conditions Distinct, but strong relationships were obtained between fabric and the elastic tensors for open and closed cell geometries, which bound the experimental results obtained for human bone and support the relevance of the selected model to address trabecular bone fragility.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have