Abstract

Optimizing operational parameters for syngas production of Texaco coal-water slurry gasifier studied in this paper is a complicated nonlinear constrained problem concerning 3 BP (Error Back Propagation) neural networks. To solve this model, a new 3-layer cultural evolving algorithm framework which has a population space, a medium space and a belief space is firstly conceived. Standard differential evolution algorithm (DE), genetic algorithm (GA), and particle swarm optimization algorithm (PSO) are embedded in this framework to build 3-layer mixed cultural DE/GA/PSO (3LM-CDE, 3LM-CGA, and 3LM-CPSO) algorithms. The accuracy and efficiency of the proposed hybrid algorithms are firstly tested in 20 benchmark nonlinear constrained functions. Then, the operational optimization model for syngas production in a Texaco coal-water slurry gasifier of a real-world chemical plant is solved effectively. The simulation results are encouraging that the 3-layer cultural algorithm evolving framework suggests ways in which the performance of DE, GA, PSO and other population-based evolutionary algorithms (EAs) can be improved, and the optimal operational parameters based on 3LM-CDE algorithm of the syngas production in the Texaco coal-water slurry gasifier shows outstanding computing results than actual industry use and other algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.